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A uniformly differentiable approximation scheme
for delay systems using splines

K. ITO'and F. KAPPEL2

Center for Control Sciences, Brown University
and

Institute for Mathematics, University of Graz

Abstract. A new spline-based scheme is developed for linear retarded functional differential
equations within the framework of semigroups on the Hilbert space R" x L'. The approxi-
mating semigroups inherit in a uniform way the characterization for differentiable semigroups
from the solution semigroup of the delay system (e.g. among other things the logarithmic
sectorial property for the spectrum). We prove convergence of the scheme in the state spaces
R' x L2 and H1 . The uniform differentiability of the approximating semigroups enables us
to establish error estimates including quadratic convergence for certain classes of initial data.
We also apply the scheme for computing the feedback solutions to linear quadratic optimal
control problems.

1. INTRODUCTION AND PRELIMINARIES

h this paper we consider the linear hereditary control system

t 0

i(t) = A4x(t + 8,) + I_ A(O)x(t + O)dO + Bzi(t). t > 0.
(1.) =0 -r

x(0) = '7. x(0) = p(0) a.e. on [-,,),

Y(t) = CX(t). t > 0,

where -r = 01 < .. < Oo = 0, x(t) E Rn, u(t) E R m and y(t) E RP. Furthermore. 4(.)
is an 1 x n matrix valued square integrable function on [-r.0]. It is well-known that for
(1. r) E Z = R" x L 2(-r. 0:R ' ) and ZI E L1oC(0.c:R" ) system (1.1) admits a unique
solution x E L 2(-r,T:R") n H'(0,T;R") for any T > 0. We define the operators S(t).
t>0, by

s(t)(7, ,) = (x(t),xt), t > 0, (7,) E Z,

where x(t) is the solution of (1.1) with initial data ()7, p) and u(t) 0 0. The segment x,
is defined by xt(O) = x(t + 0), -r < 9 < 0. The family S(.) is a strongly continuous
semigroup on Z with infinitesimal generator A given by (see for instance [6] or [25])

domA = {(77,) E Z I, E H'(-r,0: R"), t7 = 0(0)},

.A( (0),v) = (Lp, ) for ( P(0),y) E dom.A,

'ork done by this author was supported by AFOSR under Contract No. F-49620-86-C-01 1by NASA
under Grant No. NAG-1-517 and by NSF under Grant No. UINT-8521208.
"Work done by this author was supported by AFOSR under Grait No. 84-0398 and by FWF(Austria)

under Grants S3206 and P6005.
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where for continuous v

t f0
L(A) = ZAi(O,) + A(0)(O)d.

t=O

If we define the input operator B: R' --+ Z and the output operator C: Z -- R P by

Su = (Bu, 0), u E R',
C(), p) = CT, (7, ) E Z,

then (1.1) is equivalent to the following abstract system in Z:

i(t) = Az(t) + 3u(t), t > 0, z(O) = (771, ).
y(t) = Cz(t), t > 0.

More precisely, a function x: [0, co) --* R" is a solution of (1.1) if and only if the function
z(t) = (x(t), x,), t > 0, is a mild solution of (1.3), i.e.,

(1.4) z(t) = S(t)(, 7,V) + jS(t - s)B,,(s)ds, t 0.

We shall frequently make use of the following facts: The spectrum of A is only point
spectrum and A E o,(A) if and only if det A(A) = 0, where (I, is the 72 xfl identity matrix)

-A(A) = AI,, - L(eAI,), A E C.

The resolvent of A is given by (p(A) denotes the resolvent set of A)

(AI- A)-(i, ) = (t(O),,). A E p(A).

where

('(0) = edv'(O) + je-eA(# )p(s)ds, -r < 6 < 0,

0(0) = A(A)-' ( + L(f°CA-3(s)ds)

Together with the solution semigroup S(.) we shall need the adjoint semigroup S(.)*.
Its infinitesimal generator A* is given by (see for instance [6, 25])

domA* = {(y,4) E Z I u, E H'(-r,0;R " ) and ,(-r) = ATy},(1.6) A(y.,) = (0,(O) + 4 Ty'. 4 T(.)y-- ti') for (y, ) E domA%

where u, = ' + " ATy\[r..), xt denoting the characteristic function of a set If.



We shall also use the state space HI = H'(-r,0;R " ) for system (1.1). Endowed with
the inner product

(4:, ')H= (H(O) (O))R- + (P, ')V

H' is isomorphic to dom A with the graph norm. The isomorphism t: dom A --+ H 1 is
given by

( 0),9)= 99 for (p(0),cp) E domA,
(1.7) _,((0,)EoA

(' 9= (9(0), 9) forV9E H'.

Since S(t), t > 0, restricted to domA forms a Co-semigroup on domA (with the graph
norm),

S(t) = ts(t)t-', t > 0,

defines a Co-semigroup on H'. In fact, x(f)t = ,, where x(t) is the solution of (1.1) with
u = 0 and initial data (y(0), V) E domA.

If we observe tiat foS(t - s)Bu(s)ds = (x(t),x,) for t > 0 and u E L 0c(0,oo;Rm),
where x(t) is the solution of (1.1) with initial data 7 = 0, o = 0, then it is not difficult to
see that

t S(t - s)Bu(s)ds

defines a continuous map into dora A with

11 jS(t - s)Bu(s) ds11 < m(t)IUIL(O,t;Im)

for t > 0, where rn: R +  R+ is a nondecreasing function. Hence (1.1) with 7) = :(0).
E H' , is also well-posed in H'. In fact.

(1.S) X, = 1:(t) = S(t)4 + I jS(t - s)8 u(s)ds, t > 0.

where z(t) is given by (1.4) and x(t) is the solution of (1.1) with initial data (;(O), ;) E
dom A.

Approximation of hereditary control systems by ODE-systems has some history already.
In [2] the approximating systems were obtained by using the so-called averaging projec-
tions, i.e., projections onto a subspace of step-functions. The proof of convergence as in
almost all of the following papers was based on a version of the Trotter-Kato theorem in
semigroup theory. In order to get higher rates of convergence in [3] a scheme was devel-
oped which uses first order or cubic splines as approximating elements. If one considers
minimization of a quadratic cost criterion for system (1.1) a very desirable property of an
approximation scheme is that also the adjoints of the approximating semigroups converge
strongly to the adjoint of the solution semigroup of the delay system [7]. The AV-scheme
developed in [2] has this property whereas the spline scheme developed in [3] does not have
it. Therefore in [15] a different spline scheme was presented where also strong convergence

3



of the adjoint semigroups is guaranteed. In contrast to the AV-schcme [22 the spline
scheme of [15] does not have the property that exponential stability of the delay systems
guarantees uniform (with respect to the approximation parameter) exponential stability
of the approximating systems. This spline scheme still has the property of uniform output
stability [16] which is enough in order to deal with the infinite time horizon problem for
(1.1) [17]. In [12, 13, 10] a scheme using Legendre polynomials as approximating elements
was developed. The construction is based on Lanczos' tau-method. The scheme has all
the qualitative properties which are stated above to be true for the AV-scheme. Also using
Legendre polynomials a different scheme was developed in [14] using the basic ideas of
[15]. Numerical evidence indicates that this Legendre-scheme has analogous properties as
the Legendre-tau-scheme of [12], but uniform exponential stability for the approximating
systems has not been established yet. Using piecewise linear functions in [21] a scheme
was developed in the spirit of [151 which also has all the qualitative properties mentioned
above for the AN' and Legendre-tau schemes. In all the papers mentioned up to now no
convergence rates have been established or only convergence rates which obviously are
not optimal. For instance in [3] only linear convergence for smooth data in case of first
order splines is established. In a recent paper [19] I. Lasiecka and A. Manitius gave for
the first time optimal rates for the AV-scheme. These estimates are essentially based on
uniform (with respect to the approximation parameter) differentiability of the approxi-
mating semigroups, which means that the characterization of differentiable semigroups in
[20; Theorem 4.7] is uniformly valid for the approximating semigroups.

In this paper we develop a scheme using first order splines which essentially has all the
good properties of the AV-scheme. In addition we are able to establish error estimates
analogous to those in [19]. Naturally uniform differentiability is also the essential basis
for our approach which as far as convergence rates and uniform exponential stability are
concerned is motivated by the ideas of [19].

In Section 2 we give the basic ideas for the construction of the approximation scheme
using two sequences of subspaces leading to two sequences of approximating semigroups
in R x L2 resp. domA. We also give matrix representations for the approximating
generators and the approximating input resp. output operators. Furthermore we compute
the resolvent operator for the approximating generators. In Section 3 we prove convergence
of the approximating semigroups in both spaces by applying a version of the Trotter-Kato-
Theorem for Co-semigroups. For the scheme in the state space Z we get also strong
convergence of the adjoint semigroups. One should be aware of the simplicity of the
consistency arguments given in Subsection 3.2 for the approximating semigroups and their
adjoints. Note that strong convergence also for the adjoint semigroups is needed for the
proof of Theorem 7.5. The results of Section 4 are fundamental for the rest of the paper.
In this section we prove that the approximating semigroups are differentiable uniformly
with respect to N. This allows to use the ideas of [19] for the proof of uniform exponential
stability and for proving rate estimates. Uniform exponential stability is established in
Section 5, whereas rate estimates are given in Section 6. Implications of the convergence
results for the approximation of the linear-quadratic optimal control problem on the infinite
time interval are discussed in Section 7. Finally, in Appendices A and B we collect some
of the more technical estimates used in Sections 4-6, respectively.

4
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2. FORMULATION OF THE SCHEME

In this section we define the spline approximation scheme and prove some basic prop-
erties. Let t = -kr/N, k = 0,... ,N, and tN = O, tN+1 = -r for N = 1,2,....

With Bk, k = 0.... , N, we denote the usual first order basis splines on the interval [-r, 0]
corresponding to the mesh 0...,,

N N I < <O< tN
r-(90- tk+) fort k+1 _ k_ ,

BN(9) = NttN n N < _ t
k- rtk-1-9) fork- < ,-k- ,

0 elsewhere.

Furthermore we put
E Nk = X[tN,tN,) k = 1,..., N,

and

L' = (I,,), k =(O,El), k =1...,N.

The following spaces will be used in the sequel:

= span(E I.. . ,EI,,) C L 2(-r, 0; R").

Z=R" x W N = span(E ' , .. .)cZ

X = span(B0*I .... ,B)I) C H'.

Zi V = t-IXAN C domA.

It is convenient to introduce the "basis matrices"

E (E N, E N. EI")
A = (E["- E \.,

= (BNI

-'B'" = (I -l B'v I, " -B~ I, )

Any z = (rI,) E Z"' can be written as z = (t1,ENaa) = 'col(,1, a ... a), where
N _ co(1 ..... ). aN E R", is the coordinate vector of (p E W ' " with respect to

the basis EN. Similarly any E XN is given by o = B NbAN with bN = col(bN',. .. , .),
bN E R".

The orthogonal projections PA"': Z -4 Z 'N and Pi$": H' - XA" are characterized in
LEMMA 2.1. a) For (v,) E Z

=(,,E a where a= j (s) ds, k = 1 N... ,N.

b) For ' E H'

P;v B 'BbN, where b = V(tN ), k = 0...., N.

• • m |5



PROOF: The results follow by easy computations from (z - PA'z, flz = 0, k = 0 ... V
and (V, - P' V{', BkVIn)H I = 0, k = 0. , N, respectively. I
Remark. The subspaces Zrv were used for the socalled scheme of averaging projections
introduced in [2], whereas Zfv are the spline subspaces of [3]. Note that G-'P," is not the
orthogonal projection domA -+ ZN with respect to the inner product in Z.

By definition of the spaces ZN, ZN and the operators A, 8 we have

(2.1) Az E ZN for anyNEZI I

(2.1) E~~Z for any ER'm .

For a mild solution z(t), t > 0, of (1.3) as given by (1.4) we seek anl approximation
w t)EZN, t > 0. If z(t) is a strong (i.e., differentiable) solution of (1.3) then i(t) is in

general not in domA but in the subspace generated by Az(t) + Bu(t). By (2.1) we have
Aw N(t) + Bu(t) E ZN. t > 0. On the other hand ui.N (t) is in ZN' C dornA. The above
consideration concerning strong solutions of (1.3) motivate to determine u,"v(t) such that

(2.2) pN~bN(t) = d pNWN(j) = AWN(t) + Ba(t), I > 0.

dt_

Remark. If instead of (2.2) one imposes the condition

1i- (t) =P "(A1LN(t) + U(t)), > 0.

onie obtaiiib dhe splinie scheme of '[31 whiic, Lacks a udmnber of qualit-ative properties one
would like to have (see the introduction).

In order to derive a differential equation for the coordinate vector of u-" (t) w~e shall need

LEMIMA 2.2. z.) P-" restricted to Z"' is a bijection ZN -- Z-'. Its matrix representation
(with] respect to the basis i-1 B ' of Ziv and the basis EA' of Z"*) is givenl bY

1 0 .. .. 0

1/2 1/9 .

QN 0 0 In E Rn (N+1) xn(A*+1).

01
0 ... 0 1/2 1/2)

b) A restricted to ZN' is a map ZN - ZN with the matrix representation

HN+ :(0 In E R n1xn(N+]+

6



-h ere D N = L(B-, ) = 0 Aj AB N(0) + foA(O)BNY(0) dO, k = 0 ...... v.

c) The matrix representation of 8 considered as a map into ZNis

0 K R(N+l)xm,

whereas the matrix representation of C restricted to ZN is

C = (C 0 0) E RP xn(A'+,).

PROOF: For z = ;O.)E Z)" with ~-B~b N we get (using Lemma 2.1.a)) P-,;
(71. E-\a-' ), whvlere ij : (0) = b-V and

t 1.

k r E2 t+b

Part b) follows from easy computations using the definition of A and part c) is trivial.

Let L' = (PIZN ' A' = AL,\' anid put :N~t) = pN.VN(t). t > 0. Then (2.2) is
equivalent to

(2.3) MN =)AN.\"(t)±+B1u(t), 1>0.

AX" is an operator- ZNv ZN. 'Note that (2.3) is an ordinary differential equation onlZ-'
In viwof Lemma 2.2 the matrix representation A4N' of A-N is given by

(2.4) j -VQ)i

Let bV'(t) anid a"\(t) be the coordinate vectors of u- (f) and z.\(t). respectively. i.e..
u-N (t) = B-'Vb"\(t) and zN(t) = k~a N(t ). Then

a ~)= QN bN(t), t > 0,

and equations (2.2) and (2.3) are equivalent to

(2.5) QNV(t) =H N b N (t) + B NU(t). t > 0,

and

(2.6) aN(t) = A-~a N(t) + B~~u(t), t > 0.

respect ivelv.

7



Remarks. 1. If A- exists, then AZP = ZN. Hence, the approximation scheme given
in this paper is equivalent to the scheme developed in [9] for the approximation of the
spectrum of A using first order splines.
2. The approximation scheme developed here can be regarded as a spline-tau approxi-
mation (in the sense of Lanczos' so-called tau-method). In [12, 13, 10] the Legendre-tau
approximation for delay systems was developed using Legendre-polynomials instead of
splines for the definition of the spaces ZN and XN. The Legendre-tau scheme was formu-
lated in a similar manner as above (see equations (2.3) and (2.4) in [10]).

3. Using different spline elements for the definition of the subspaces Z N and XN one
can get a whole family of approximation schemes using the ideas presented in this paper.
We conjecture that some of them lead to approximations of the characteristic equation of
the delay systems by functions which involve the Pad6 approximations of the exponential
function in the main diagonal of the Pade table (see the remarks before Lemma 2.4)

For the proof of convergence for the scheme presented in this section we shall need an
explicit representation for the resolvent operators (AZ- AA )-. We introduce the function

,U() 1 72.7-EC, r$: 2,1 + r/2

which is the first non-constant entry in the main diagonal of the Pad6 table for - (cf.

[1]). Next we define

(2.7) C.\ = ZB (,(A/N). -( <B <0 . A $ -2.N/r.
k=O

which is an approximation to cA0 on [-r,0] and put

z\lA) = AI - L(c,%I). A $ -2N/r.

PROPOSITIO.N 2.3. a) .4 complex number A $ -2N\/r is in a(A'X) if and olY if

det A\(A) = 0.

b) Let A o (,(A-). A $ -2.'/r and : = (71. E-" a-N) E Z. Then

(AI - F')-'z = PN11,(O),

where
V- (0) = A'(A)-' (Y + L(7N)), -= (0) + T"

with
N k

r (I + (rAIN)) B (O) (rA/N)k-jaN
IV() 2Nk=l k =1j

IN' k (~A.). +l(AA)~+

k=1 J=



PROOF: Given E ZN we solve the equation (AI - A)u , = z.u = k'VcV E ZN. This

equation is equivalent to (see (2.4))

(2.8) (AQ N - HAl)(Q\T)-CN = aN,

We put bN = (QN)-IcN, i.e., U, = pN,-,V, with ,' = B NbV. The definitions of Q\V and

HN (see Lemma 2.2) immediately show that (2.8) is equivalent to

N

(2.9) Ab - N b N = aoN

k=O

(2.10) (1± = (22- )) ,+ T) k k = 1,... ,.

If A j -25"/r then (2.10) is equivalent to

k

b= (rA/A)kb- " +r (1 + 1,(rA/)) ZI1(rA/N )-)0N

(2 .1 1 ) 
=0 .\

€(tk )bo  + r (ti) k = I ..... .

Therefore in case A $ -2.V/r equations (2.9) and (2.10) are equivalent to (2.11) and

N k

-Ab = 7 + L(I it 1 irA/NY)) Z:Dk>Z~A/~~j
k=i j=i

= 71 + L(r'V).

This proves that A # -2N/7, is in a(A-\) if and only if det A'x(A) = 0. Moreover. we

immediately see that for A a(A\). A $ -2.V/r, the element (Al - A')-'z is given as

stated in the proposition. I

Remarks. 1. Using the definition of cA we see that

(2.12) N f(t ) (tN - s)E'(s)a'N ds.

k

0 %-

i.e.. 7'N is the interpolating spline for the function 0 f; o (0 - s)E' (s)a, ds.

2. In case A = -2N/r equations (2.10) arc equivalent to

kN r (1 rA

' 2A + =0....-1.

This together with (2.9) gives

N -

-r ) -a- D a-\'

k=0



Therefore A = -2N/r is in a(AA7 ) if and only if det DN = 0. In case A(.) 0 and A,
sufficiently large this is equivalent t~o det At = 0, a condition which is equivalent to the
existence of so-called small solutions for the uncontrolled delay system (see [8]).
3. In the single delay case L( o) = Aopo(O) + A, p(-r) we have

A A)= AI" - 4u - (1- rA/2N N A,, 6-N
1 + rA/2NJ 2 /)

For the other schemes discussed in the introduction AN(A) in this simple case is given
by A'N(A) = AI,, - Ao - fN(A)AI, where fN(A) is a rational approximation for e-r.
For the scheme of averaging projections we have fN(A) = (1 + Ar/N)-N (see [2]) for the
Legendre-tau scheme of [12] fN(A) is the N-th entry in the main diagonal of the Pad6
table for e'r, whereas for the Legendre-scheme of [14) f N(A) is the proper rational entry
at position (N, N - 1) in the Pad6 table for e-A. For the piecewise linear scheme of [21]

whaefN()= ( 6 - 2,X ) A' (note that 6-2r iaPd6apxImatfrC)
S .6+4A/AN+(rT/AV 6+-4,-+-,Ti a6aprxm o

In case of the schemne developed in [15] f 1\1(A) cannot be given explicitely but is obtained
by a recursion formula.

For later use we state a simple observation:

LEMMNA 2.4. Let E = = IA. I + f0 IA(0)I dO. Then det A,(A) : 0 for all A E C with
Re A > 0. JAI > -), N = 1,.. E

PROOF: Obviously 1(1 - rA/2N')(1 + rA/2N)-'I <! 1 for Re A > 0. Therefore JIu>9()I < 1
for Re A > 0 and - r < 9 <0 (see (2.7) for the defin t ion of c N ()). Thus

1Y:~c (1)+ j A(P)(())dO

and the result follows fromn

N 00
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3. CONVERGENCE OF THE SCHEME

In this section we establish convergence of the approximation scheme presented in the
preceding section for both state spaces, Z and H'. Moreover, we also prove strong con-
vergence of the adjoint semigroups SN(t)* to S(t)* in the state space Z. We first consider
convergence in Z. For that purpose a version of the Trotter-Kato theorem as given in [1S]
will be used.

Let (YN, 11. -1N) be a sequence of Banach spaces which converges in the sense of Kato
to a Banach space (17, j111) (see [18, Ch.IX, §3]), i.e., for each N there exists a bounded
linear operator pN: y _. yA' such that

(K 1) 11PNI <_ cl for all N with cl independent of N,
(K 2) lim-_. 11 pN y((

4  
= IIylI for all Y E Y,

(K 3) there exists a constant c2 > 0 such that for all N and all y E yN there exists an
x E Y with

y = PN x and I'IX( < C 2 [lyIIN.

Under these conditions the following result is valid:

THEOREM 3.1. Lct A and AN be the infinitesimal generators of strongly continuous semi-
groups S(t) on Y and SN(t) on yN, respectively. Suppose that

(i) for some constants ,; E R and M > 1

((S(t)(K < Me' for all t > 0 and all N

and

(ii) for some A E p(A) fl l=, p(AN) and all x E Y

lira (I(AI - A F)-IP" - pN(AI - .A)-'Xj, = 0.

Then for all x E Y
lim S.(t)PNX - PY'S(t)XIIJ = 0

uniformly for t in bounded intervals.

PROOF: The proof of this theorem uses exactly the same arguments as those given in
[18, Ch.IX, Theorem 2.16] and is based on the equality

(AI - A,-N)-, ( S. v(t)V. ,"  pN S(t))(AI - .A)-'

*(3.1) 10 1jSNt S- )((AI - A N)lPApN _PN(AI - Af))S(s) ds.

Then for any y E dom A

(3.2) lim ((AI - A N)- (S,'(t)pU - P"S(t))YI., = 0

11



uniformly for t in bounded intervals, where we have used assumptions (i) and (ii) together
with Lebesgue's dominated convergence theorem. Next we consider., for x E Y,

(P-"S(t)-SN (t)PN)(AI - ,)-lx

S(PN(AI - A)-' - (AI - A.4)-' PA) S(t)x

+ (Al - AN)-1 (PNS(t) - sN(t)PN)X

+ SN(i ((Al - A N) - PN - pN(A - -') X.

The second and third term on the right-hand side tend to zero uniformly on bounded t-
intervals as N --- oc, because of assumptions (i), (ii) and (3.2). The same is true also for the
first term on the right-hand side of (3.3), because for any T > 0 the set {S(t)x 10 < t < T}
is compact. This shows that

lim (pNS(f) - SN(t)pN)y = 0
N- oc

uniformly on bounded t-intervals for any y E domA 2 . A density argument finishes the
proof. |

In our situation Y" = Z-v and pTh is the orthogonal projection Z --+ Z". We have to
establish hypotheses (K 1)-(K 3) and assumptions (i), (ii) of Theorem 3.1.

3.1. Uniform dissipativity. Following an idea which goes back to [26] we shall use
equivalent norms 11. I[1N on Z in order to establish the dissipativity properties which imply
assumption (i) of Theorem 3.1.

Forj = 1. .- 1 define the indices kN' by 9, E [t k, kt -_1). If AN is sufficiently large

(which we assume from now on) then

1 < k'-iV < ... < k- -N v

The step functions g " (0) = E=I g" X[Nt S ) are defined by

N Tr *9N=l+X;;

N N +r
(3.4) 9kgkt l+T fork N,...,N-with k {k-A'lj ..- }

g = gN+1 + r + B "(0j) fork = kj and k = k, -1,j = 1.. -1.

It is obvious that

g(O):= lim g (O) = r +9+ ZX1,.o) a.e. on [-,.0].

N -1



The inner products (-, ")N and (., .)g are defined by

((n, ). (p, 0.)) N = T + j (0)TV,(0)gN(0) dG,

((7,, V), (p, V))g = 7Tp + j V(9 )T ,(9 )g(0) dO,

for (7, p), (p, V,) E Z. Because of 1 < g(G), gN(9) < t + r, -r < 9 < 0, the corresponding
norms (1" IN, I 11, and I" Ii on Z are equivalent uniformly with respect to N,

11Il < IZ 4N, IIz11g -< (f + r)1/11lzJ1 for z E Z.

Therefore hypotheses (K 1) and (K 3) are satisfied for (ZN, 11 lix) and (Z, i1 -Jig). For
z = (71, ) and P-'z = (11,P N ) we get

I N11'1 121i - II: f-= jIj(gN ) 12V ji2 - jIg ' II I
-< 1(g1)1'2(; - _ g12 (11(I(gNv )112 0 llL  + 1j1'/ 2 IL

_< ?-)l/ 2 11N _ ((gN )112 + 1 g/N'12p-N

(y~~/~i ~A 1,40L + 11(9' g)1/21pL2) (i~.' 11iL 2 + ijg1/2 ':IIL2).

This estimate shows that lim,\-.c tIP?"ziiN = 1JzJJg for all z E Z, i.e., assumption (K 2) is
also satisfied.

LEMMA 3.2. Let S(t), f > 0, be the semigroup onZN generated by A"".
a) For all z E ZNA, z = ('I )

(A :)x ___ W., -17II.12 1 1

for -Y sufficiently largC. where ,. = + r/.N with

1 T\ 1 1 A
..= r(Ao + A0 ) + + r) + 2 A j2 + 1iAiiL2 .

j=1

b) For N sufficientlY large

IIS"(t)ilN _ W- and IISN(fl)*IN _< e'F' , t > 0.

PROOF: Part b) is an immediate consequence of part a), because (AN zz)N WIiz N

for all z E Z. In order to prove a) let z = ENaN E ZN and LNZ = (,;AN(0)' N) with
PN = B.A'bA. Then

(3.5) aN = QNbN.

13



For elements z1 = EkNcN and z2 = k NdN a simple computation yields

(3.6) (--1, Z2) N = (cN)T RN dN,

where RN = diag (1, -*gr',..., r gN)® .0 In. Using (3.5), (3.4) and (2.4) we get

(ANz, z)N = (bN)T(HN)TRNQNbN.

Simple computations using (3.4) and the matrices HN, QN as given in Lemma 2.2 show

that
N _NII2 + 1 N-

(AZZNC9 lo 2k1k -g k -N Jggbp

N

+ (b°N)r DNbN + (b N)T ZDN b N

k=1

N - b 2(3.7) = (C+ r)lb-"' % ,, I b - -jb j

k=1

-~(B.)),b. 1 2) +N2N)T AN
(= N )! Ni

Observing Sk (') _ forlbk _I 12 +,? and ko b/'" w e

N 0
A@) A. ) N( N.)

(bo)T k,~ Aj) b' + (b~) A(O)(9 B"()~ dO.

k1(f

j=1kl

Observing BN(e,) = 0for A' $ N and k N1 we get

k-

I%~ I k~j-1i +0~ +b~ Bu b:j~ N

< 1_ bx 2k' 1 V( V 0.

j=I_ ,o Z,-, :ZB'V-(O,)b, + B :,o _ I b
=Ij=l 1 2

Using Aa2 + (1- A))2 - (Aa + (1-A))2 > 0 for 0< A< 1 and a,fl 0 we get

N(I
(b N) T E jBN)bN

k=1 =1

(3.8) < 2l ~ b

+N kZB.,I I + ? B> 1 )lbk> _I2)
2 j

14



Equation (3.5) implies

N N N
(3.9) I[11'2 = NZIa 2 = r z lbN 1

4 N  + bN 12 < r Z(IbN 
1

2 + bNI 2 ).
--k=1 k=1 k=1

From ,N(0) - ((t- -0)b' + (0-tLN)b J), t < 0 < tN 1 , we obtain

N Nr - kk Ibk , - k-1 we o(b_ta i

L2 + (b') b -
1 + (bub + l Z IbN 112 + 2NN12)

k = - k- 
k = l

This implies

0 N

(b N)T LA(O)(ZB ()b') dO
k=0

lIAIL2 IINNIIL2 - IIAI lbo'112
(3.10) b fb 1L1',N12 11 2b 4 - 'L2

N__A b + (IbL 2 + IbN12).

k-I

The estimates (3.8) and (3.10) together with (3.7) imply
N N

. 2 1 IbrN2 + r + lb5l 2)
k=1 k= -1I

N.,~.Ibo T2  
- r 2

:4. Z (b N 
1 + lb Nl2)

k=1

rib 12 _ _ ._ b 12 + r b + 12
0 4N N- + I

k=1

N
< WNIboi - r Z--(IbN 1

2 +Ibl)

k~i

Observing (3.9) and bo = 77 we get the desired result. I
Remarks. 1. It is not difficult to verify that

(3.11) (Azz), _ wj(0)12 - II VI12,2 for all z = ( (0),V) E dom A.

2. In the estimate (3.10) the right-hand side can be replaced by (1/2)ItAIj 2 , iboNr2 +

(r4N) EN1 (Ib 1 12 + bNl 2) which would give the dissipativity estimate

(A"' z , Z)- N + I (Am.x(Ao + Ao') + + r + A + IIIIL2)) I??l.

( N -2 j=A
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This would also be sufficient for b). On the other hand, it was shown in [11] that the
estimate as given in a) can be used to give a proof for uniform exponential stability of the
approximation scheme different from that in the present paper (which is based on uniform
differentiability of the approximating semigroups).

3.2. Consistency of the scheme in Z. As we shall see it is considerably simpler to
verify assumption (ii) of Theorem 3.1 for AN and A if 0 E p(A). In this case obviously
also 0 E p(A N) for all N because AN(0) = A(O). In this case we also get assumption (ii)
for (AN)* and A* without additional efforts.

LEMMA 3.3. Suppose 0 C p(A). Then

lim II(AN)-IPNz - PNA-ZIIN = 0

and
lim Jl((AN)*)-1P'z -PN(A*)-'zll,,, = 0

,N, -oo

f'or all z E Z.

PROOF: The adjoint of pA" is the injection i': ZN -- Z. Then observing A'N(0) = A(0)
and e N(0) = 1 we get from Proposition 2.3,b) that (AA')-Z = PNA-1Z for z E ZN, i.e..
(AN)-l = pA'A-'i* and ((A-"')*) - ' = P.'(A')-*i,'. Therefore for any z E Z

[(AFVP)-'p.Vz - P''A-zj[N = IIP'A'A - ] (PXvz - z)1.,-.

The result follows from (K 1) and pNz -+ z. The proof for the adjoint operators is
completely analogous. I

The basic convergence result for our scheme in the state space Z is contained in

THEOREM 3.4. Let SN('), t > 0. be the semigroup on ZN generated by A . i.e., SN(t) =

C "E - I, t > 0. Then for all z E Z

lim SN(t)P% Z = S(t): and lim SN(t)*P'z = S(t)z

N-oc N-oc

uniformly for t in bounded intervals.

PROOF: Let us define the operators T: Z - Z and TA': Z N _ -+ ZA' by

(3.12) T(7, ) = (77,0) for ( E7, ) C Z and T N = PNTIZN.

Replacing the operators A and AN by A - KT and AN - tTN, respectively, just means
that the matrix A 0 in (1.1) is replaced by .40 - 4,,. Therefore we can choose K E R
such that the constants L, and wN corresponding to A - KT and A' - KTN (where w,
and wN are defined in Lemma 3.2), respectively, are negative. Let T(t) and TN'(t) be the
semigroups generated by A- T and AN - KTN. By Lemmas 3.2 and 3.3 the assumptions

16



of Theorem 3.1 are satisfied for T(t) and TN(t) with A = 0 in assumption (ii). Hence for
all z E Z

lim IITN\(t)pNz _ pA'T(t)zIIA. = 0

uniformly on bounded f-intervals. Since the norms 11 - uN and 11 -1 are uniformly equivalent
and IIPNAT(t)z - T(t):1( -~ 0 as N -+oo uniformly on bounded t-intervals, we obtain

(3.13) lrn T N(t)P Nz = T(t)z
N-oo

uniformly on bounded intervals.
Returning to the semnigroups S(t) and SN(t) we first observe that by the variation of

constants formula

(3.14) S(t) =T(t) + Kc ] T(t - s)TS(s) ds,

=T(t) +KjN(t _ S)TN SN(.s) -IS,

for t > 0. Since T is a finite rank operator, (3.13) implies

(3.15) IT.\(t)pN T - T(t)TIjcczz) --- 0 as N -+o

uniformly on bounded i-intervals. From (3.14) we get

IIS(t): - S"(t)P "zj :fl < IT(t)z- - T N(i)pVZlII

" K jIIT(t - s)T- - T N(t _ S)pN T I Ic(Z'Z)1SAT(S)pzII ds

+ K j IT(t - s)TIIjc(zzlIIS(s)z - S"V(s)P" zfl ds.

By Gronwail's lemmia using Lemma 3.2. (3.13) and (3.15) we obtain

IM SN(t)p~'z = S(t)z-
I -

uniformly on bounded t-intervals for all z E Z.
The proof for the adjoint semnigroups is completely analogous.3

CORLLAY 35. or C anu Ck10, o;R') let z'N(e) be the solution of (2.3) with
ZN(O) = P'Vz and z(t) be the solution of (1.3) with z(0) = z. Then for an"y T > 0

lim zNV(t) = z(t)

uniformly, for t E [0. T] und uniformlY for uI~oj-j in bounded subsets of L'(0. T: R"'),

PROOF: On the basis of Theorem 3.4 the proof is quite analogous to the proof given ini (2]
for a similar result. 1
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Remark. In Appendix B we shall prove that (AI - A )-lP-"z ,* P-"(AI -A)'

as N --+ oc for all z E Z and any A E p(A) (Lemma B.1). In view of this result the
introduction of the operators T and TN in the proof of Theorem 3.4 is in principle not
necessary as far as convergence of the semigroups SN(t) in Z is of concern. But we already
have seen in this section that the approach taken in this section gives also convergence for
the adjoint sernigroups SN(t)* without additional efforts. On the other hand the proof of
(,\I- (.AJN)fIpNTZ -- pN(AI - A*)-z for A j# 0 would be very involved.

3.3. Convergence of the scheme in H1. We shall prove convergence of the scheme in
H' using results already obtained for the scheme in Z. For the nonhomnogeneous problem
we shall also need

LEMMA 3.6. Let u, N (t), t > 0, be the solution of (2.2). Then there exists a constant D> 0
(in fact D = (3/2)I11L 11 (HI ',') + 1) such that for all N

I1iul N(t)II1 x < C2,;,1jtWIN(0)II2 , +3j e2,;;(t8) I B 121U(S)1 2 ds t > 0.

PROOF: Let tuN(t) =B N bN1(f). Then

Ntw (t)112~ . b (t) 12  + (t 12.1()

k=1I

Since b N(t) solves equation (2.5), we get

-~~~~~vt + ( Z0 i (t) _ bN (t))T (>,()-b ()
2 dt b~ 011 0 0 rk= k- k- k

2 A'

-(L(iu
1 N(t)) + Bti(t))"'bN(t) + 1 IbN(t)2 -I N~(t)12

0 2 0 2N

< JL~u N (t))I12 + 1B 12111(t)12 + lb N(t) 12 + IL(t u,N(t))12 + IB 12I1U(t) I

2 H 2

Thus Gronwall's inequality yields the result. 1

THEOREMi 3.7. For: =z~0) with y, E H' and ui E LI.,C(0. oc; R"') let z(t) be given
ky (1.4) and w '(t ) be the solution of (2.2) with initial value t',N(0) = tpj',. Then

lim 11UN(t) _ LZ(j)jjH, = 0

18



uniformrly on bounded f-intervals.

PROOF: Since H' and dom A supplied with the graph norm are metrically isomorphic..
it sufficies to prove JiAw'(t) - Az(t)Ilz --* 0 and (IW N (t)) (0) --+ (tz(t))(O) as N --4 oo
uniformly on bounded t-intervals. By definition of AN' and LN we have

(3.16) A NpNWN(t) = AL' NWNV(t) = AN (t), t > 0.

We first consider the case u =-0. Using (3.16) we obtain from (2.2) (d/dt)Aw-''(t)
AN(d/dt)PNWN' (t) = ANAuN (t), i.e.,

(3.17) AwA'(t) = SN (t )Aw'(0), t > 0.

Lemma 2.1 implies

(3.18) P'"Az-(0) - AUN(0) = (L(pr - i)0)

where pN = FN B N(tN ). For some K > 0 independent of N we have (cf. [23, Exercise
(2.10)])

(3.19) - I~c~K(r/N) 1 1YI1IH1

for N' = 1,2,... .. This together with (3.17) and (3.18) implies

IIAU.A (t) - A:(t)IIz
ISN(t)II IiAU)N (0)- PNVA..(0)Iz + lIS\V(t)P-NTAz(0) - S(1A:(0)jz

K AicWIIILIc(,H, ,R-)A (-)11r I
N

+ IISN (t)pN A-(0) - S(t)AZ(0)Ijz for i > 0.

By Theorem 3.4 this gives

lim 1jAzr- '(t) - A:(t )lz = 0

uniformly for t in bounded intervals. Since zN(t) = pNwN(t), t > 0, satisfies (2.3), by
Theorem 3.4 we also get liMA'...,, jPNU,N(t) - Z(t)IIZ = 0 uniformly for t in bounded
intervals. This implies

I I N(t)(0) - (t z(t)) (0) 1-- 0 as N --+ 00

uniformnly on bounded 1-intervals. Note that (IwN(t))(0) and (tz(t))(0) are the vector
components of pNWN(t) and z(t), respectively.

We next consider the case z = 0 and u E C' (0, T; R"), T > 0. Equation (2.2) together
with (3.16) implies

p.Vu,N(t) = j 5 N(t - .s)13u(s) ds, t > 0.
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Hence we have

Aw?%'(t) = AN P.Nu,N(t) =A'v ] SN(t - s)fBzds) ds

SA1(t)Bu(O)0 S- 13~)+j (t - s)Bzs(s) ds.

Similarly we get

Az-(t) = S(t)13u(O) - Bu(t) + fS(t- .8)ft (s) ds.

Therefore

A-(t) - Azit _ St SN~(t))Bu(O) + ]0 (S(t S N) -S(t 83))~(~ ds.

By Corollary 3.5 this implies

jrn IIAz(t) - Aw N(t)11Z 0
A C

uniform~ly for t in bounded intervals. As in the previous case (but now using Corollary 3.5)
we also get limx ,\ ,,(t UN(t))(0) = (tz(t))(O) uniformly on bounded t-intervals.

In case z = 0 and zi E L 2 (0, T; Rm ) we have the estimate (see Lemma 3.6)

I1u? N (t)IiH1I < V3'rc lBI IiUIIL2(0,T;R-1 0 < t < T.

We have an analogous estimate for tz(t). Density of C1 (0. T. R ) in L 2 (0. T: R") and a
simple application of the triangle inequality implies the result for the general case.
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4. UNIFORM DIFFERENTIABLITY

In this section we first establish differentiability of the semigroups S-"(t) uniformly wi-th
respect, to N. Uniform differentiability of the approximating semigroups 5\"(t) is funda-
mental for our approach to obtain rates of convergence for our scheme (see Section 6).
Also the proof for the uniform exponential stability property of the approximating semi-
groups (see Section 5) is based on uniform differentiability of the approximating semigroups
though a different proof would also be possible (see the remarks at the end of Section 3.1).
For a fixed real number b > r and numbers a > 0, w > 0 we define

=a I A EC IIMAl !e(aRe A)b and ReA < w

and the "exponential sector"

Sa., JAE ClReA~w and A Ea.}.

THEOREM 4.1. a) Let L, > Iy (- given in Lemma 2.4), b > r, 0 < 6 < I and put a,

w + .1 Iny . Then for all a > max(ao, a,) (ao as defined in Lemma A.5)

oAN)C Sa,, for all N

and there exists a positive constant ci such that

1101A - X )-'j !S cl JIm Al

for all A E E,,.: and all N.

b) For anky compact subset K of p(A) there exist positive constants C2 and N2 Such that
K C p(AAT ) for N > N'2 and

l!(AJ - A-)-'l <C2r for A E K and N > N2 .

PROOF: By definition of a, and K0 we have

(4.1) K()~ f and IlmAl J~ for A EE

We first prove that A E p(A") for all A E ~awand all N. According to Theorem 2.3.a)
this is equivalent to det AN(A) : 0 for A E E.,. Let a > max(ao, a,). Then Lemma A.3
and (4.1) imply

JL~N1)J:5-y max lI(Ar/N)Ilk < LKoe-ablIm Al

5(1 -)AJ for AE Ea,,N=I'l.

Therefore IAN(A)) ! blAJ for A E Ea.; N = 1.2,.,and (taking the Neuman series for
zIV(A)-i)

(4.2) lzA(A-l K for A E E0., N = 1.2.
-61AI
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This proves a). Note that by Lemma 2.4 any A with ReA > -) is in p(A " ) for all N.
According to Theorem 2.3,b)

(AI- AN)-z = PN(V(O), ,) for allz E ZN ,

where V, is given in Theorem 2.3 and z = (r7,i) - ENa'. Using Lemma A.5 we get
(y = p(rA/N))

IrN(tN)I r =jI

k .12 NI + 9a+ a~) EP aai)Oj
j=l

k-

(4.3) <r -1 a I)KoeablmAI
j=1

k 12

A' N 1 / 1-

1 =1< ,.1/2 1 -6 l LI m

and

(4.4) IL(r)l < 2r"/2(1 - 6)llIL2 IIm A
W

for all A E ,, and all N. The estimates (4.1). (4.2) and (4.4) imply

-(O)l : - (a i + .r1/2 1(a 6 I.l
(4.5) < I1 ((-1 + r1/2 II :IIL2) 1 - ),hii Al

< + r'/2)11-11

for all A E E.,,, z E ZN aiid N 1,2 .... Uilg (4.1) again we also have

(4.6) l(O) < (1 -6)2 ( + r1/2) IIzI lImAl

for all A E z E ZN and N = 1. 2...... From (4.3)-(4.5) and Lemma A.5 we obtain

(4.7) I,(tNhl 1 + rh/2) + r/2) lzII ImAl. k- 1...... N.
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for all A E E,,,z EZ*" and N 12.... .Let j 1- (1~( + 112 ) + 1/2). Then
(compare also (3.9)) by (4.6) and (4.7)

N
fPV(tL(0. ')112 < l (o)l2 + E -,(tN ) +

k=1
_ 2(l + ,)l zlI21Im A12

for all A e Ea,,, z E ZN and N 1,2,.
In order to prove b) we use Corollary A.4 to see that K C p(A N) for N sufficiently large,

say N > N 2 (compare Proposition 2.3,a)). We also see that AN(A) - --+ A(A) - 1 uniformly
on K, which implies IAN(A)-1 I const. for A E K and N > N 2 . Furthermore Corollary
A.3 shows that sup r<0<0 ]c'(O)l = maxo<j<N p(rA/N) J < const. for A E Kand all N.
Therefore (4.3) reduces to kr :(t5')j < const.i1piiL2 for A E Kand all N. The rest of the
proof uses the correspondingly simplified versions of (4.4)-(4.7) in order to get

liPN(A.'((). t,)1i2 < const. l[ZI 2 for A E K and N > Ni. |

It is easy to see that for arbitrz"rv a. w. E R and b > r we have

(4.8) I 0_ K0ofaImAIl, -r < 9 0, A E r,.

If we choose L' > "), a > max(a 0 .a,). then analogous computations as in the proof of
Theorem 4.1 show that

1101 - A)-' c, lim Al for all A E ,..
Let F = F U 1 U F3 . where

, = {A E C I tReA < and Im = (a-ReA)b}.

F2 = {A E C I Re A = wand Im Al 5 d( - ')b}.

F3 = {A e CI A E r.
The following theorem is an immediate consequence from [20; Thin. 4.7j.

THEOREM 4.2. a) For all .N and all b > r

(4.9) S(r M j A"(AI )- 1 dA, t > 2b,

and

(4.10) ASN = A\' t(AI - AN)-' dA. t > 3b.

b) For all b > r

(4.11) S(t) = c)"(AI - A)'dA, t > 2b,

and

(4.12) .AS(t) = 1 jAc(AI - A)_1 dA, t > 3b.

Remark. The contents of Theorems 4.1 and 4.2 explain why we labeled our scheme
"unifornrly different iable".
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5. UNIFORM EXPONENTIAL STABILITY

In order to establish the property of uniform exponential stability for our scheme we
shall use convergence of the resolvent operators (AI - AN)- 1. Our approach is the same
as in [191.

THEOREM 5.1. Let wo = sup{ReA I A E a(A)}. Then for any e > 0 there exists a

constant l = M(e) such that

11S p?(0ll _< U()e (WO + ' ,  t > 0,

for N sufficiently large.

PROOF: By assumption we have A E p(A) for ReA > wo. Corollary A.4 together with
Proposition 2.3,a) implies that for N sufficiently large A E p(AN) for Re A > Wo + E.

Therefore we can choose w = wo + f in the definition of the path r for the representation
(4.9). This is a consequence of Cauchy's theorem, because (Al - A)-' and (AI - AN)- 1
for N sufficiently large are analytic in Re A > -'o + c. Furthermore we choose b = 5r/4.
From (4.9) we get the estimate

1S-(t)1 f r + j 6ReRA(AI- AV")-lll dAl

+ 2 1 j II(AI - A N)-111 jdAj =: J, + J2 for t > 2b.

Using Theorem 4.1,a) the estimate for J, is

J < j C ,ReImAl IdAl. t > 2b.

A parameter representation for F1 is

(5.1) A(r)=r--i f -C < 7 _< w + C,

with IA(7)l = (1 + b;'(o-r)l) /2 < .-,b(,(..0+,)b + b2c2ab)'/ 2 . Therefore
. ,+rconst.

J < const. ,(-o+()' < c(-'o+,), for t > 3r.
S 3, - t-2b -r-

where c is appropriately chosen (note that 2b = 5r/2 < 3r).
The path r 2 is a compact subset of p(A). By Theorem 4.1.b) we have for A E F2 and

N sufficiently large

J2 < const.f(o-+')t for t > 3r.

which together with the estimate for J, shows that

(5.2) lIS""(t)ll < const. (G °+')t for f > 3r.

By Lemma 3.2 (11SN(t)ll) =,,... is uniformly bounded on [0,3r]. This together with

(5.2) proves the result. I

Remark. If wo < 0 then Theorem 5.3 states that the approximating semigroups S':"(t)
are exponentially stable for N sufficiently large with a uniform decay rate. which can be

chosen arbitrarily close (from above) to the decay rate of the semigroup S().
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6. CONVERGENCE RATES

In this section we establish rates of convergence for our scheme. The basic idea for the
approach, namely to use uniform differentiability of the approximating semigroups, was
introduced by I. Lasiecka and A. Manitius in [19] for the scheme of averaging approxima-
tions. We shall prove two kinds of rate estimates: a) Optimal rates on t > 0 for sufficiently
smooth initial data. b) Optimal rates on t > to > 0 for general non-smooth data.

For fixed w > -y (-y as defined in Lemma 2.4) and E > 0 we choose b E (r, r + E/7) and a =

max(ao, a,) (ao defined in Lemma A.4 and a, in Theorem 4.1,a)) in the definition of Ea,,.
Let wo = sup{ReA I A E a(A)}. For any wi E (wo,w] the path r,,, = ri, U F2 ,,, U r 3 , ,
is defined by

ri", = {X E C I ReX < w, and IMA = (a-Re\)b},

F = {AE C fleA w1 and ImAl < F(a-o,)b}

r3,,, = {A E C I E rl,,, }.

The following assumption will be used in some of the estimates:

(H) The delays 9, j = 1 .... ,, are commensurate (i.e., for t > 0 and natural numbers
kj we have 9j = k)t. j = 1.... ,J) and are contained in the set of meshpoints tN,

k = 1,...,N (which is the case for N = inki, m = 1,2,....

The first result on convergence rates is concerned with norm convergence of the approx-
imating semigroups (with rates 0(1/N) resp. 0(1/N 1 /2 )) for t sufficiently large and with
convergence uniformly on bounded intervals if initial data are in dora A'.

THEOREM 6.1. Let a = 1 if(H) is satisfied, otherwise a = 1/2.
a) For any c > 0 there exist positive constants cl, C2 and N 1 such that for N > N1

(6.1) IIS,'Vt)pI\ _ pN S(t)IjjC(z'z) c1 ( r )o,(w.o+(1 I S +e(6.1) NI''('P t > 5r(--er

and

(6.2) IL' SN(t)P ' - S(t)ll (Z,domA) c2 ()Oe()', t > 6r + E.

b) For any T > 0 there exist positive constants c3 and N2 such that for N > N2

(6.3) IISN(t)PNz - PAS(t)zlI :_ C3 ('r ) IIZ11domA2, 0 < t < T,

for all z E domnA 2 (IIZ4domA2 ="11jzf1 + 11A2zl1 for z E dom A 2 ).

PROOF: For e > 0 and sufficiently small let w, = wo + f. By Theorem 4.1,a) we have
ar(A ' ) C Sa, for all N. From Theorem 5.1 we infer that ReA < w, for all A E a(AN)
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and N sufficiently large, say N > N1 . By Cauchy's theorem we can replace F in Theorem

4.2 by F,, for N > N 1 . Using (4.9) and (4.11) we obtain

IIpNS(t) - S 'N(t)P N II 1 11 eIri..,1ur.-A)- -\W- AA'y1P ) dAjj

+ -IIjeAt(pN(AI-A)-' - (AI -ArPN)p dAjj
1,,

(J + J2 ).
27r

Using the parameter representation (5.1) for "1,,, and Lemma B.1,a) we get (note that
5b < 5r + e)

J, : 2c (~ j etRe)~Im Al4IdAI

Sconst.( er(t- 5 b)dr <r

for t > 5r + E and N > N 1 . Using Lemma B.1,b) we obtain analogously

J2 _< const .(r ), C(W;+ o t

for t > 5r + E and N > N1 . Combining the estimates for J and J 2 we get (6.1).
For the proof of (6.2) we first note that SN(t)pNz - S(t): = (i(L "S'X(t)Pxz -

S(t)*-)(0)... ) for z E domA. Therefore (6.1) implies

(6.4) ,(L NSN (t)P!': - S(t)z)(O) _ c1  r

for t > 5r + f and N > N1 . It remains to estimate

iIAL'\'SA\((t)p N - AS(t)I 4(zz)
(6.5) 11 A SN(t)PN - pNAS(t)[Ic(zz)

+ IIPNAS(t) - AS(t)Ilc(z,z).

From (4.10) and (4.12) we immediately get

ANsN(t)p N  pNAs(t)
I fr Ac((A/-AN) - Ip1 NA-)'d

27ri Ae t  P) " - P(AI -

for t > 3b and A' > N1 . Estimates analogous to those leading to (6.1) (using Lemma B.1)
give

(6.6) IIANSN(t)pN _ pAAS(t)IIc(z,z) < const. ( r ). O+,)t

N
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for t > 6r + e and N > Ni. Note that in the estimates we pick up an additional fac-
tor JAI which is bounded by "const.ImAJ" on 'Ea ,,. We still have to estimate 11(pA' -

I)AS(t)I~c(zz). Let t > 2b. Since S(t) is differentiable for t > r, we have AS(2b)z E doni A
and therefore

IIPA AS(t)z - AS(t)zIJ IIpATS(t - 2b)AS(2b)z - S(t - 2b)AS(2b)zJl
(6.7) <const. r itS(t - 2b)AS(2b)zJIHi.

Here we have used that

jjp( (O) )- ((P(O), V)II :5const. r Ik~lH1 for O E H',

(compare [19;Proposition A.3]). By differentiability of S(t) we get from [20; Lemma 4.2]
that AS(2b) and A2S(2b) are bounded operators. Thus

Jjl S(t - 2b)AS(2b)zIL2 < C (wO+c)(1-2b) JIAS(2b)II 11:1

and

IItA4S(t - 2b)AS(2b)zI1L2 = 11 tS(t - 2b)A 2 S(2b)z11L2 < e(wo+")(f 2b)I. 2S(2b)II 11:11

i.e.. jjtS(t - 2b)AS(2b)z In' < const.c(.aO+f)tIIzIJI, which together with (6.7) gives

(6.8) 1(p"NAS(t)z - AS(t)zJJ < constew+t . r1

for all t > 2b and N > N1. The estimate (6.2) now%& follows from (6.4)-(6.6) and (6.8).
In order to prove part b) of the theorem we choose A E p(A). Then Lemma B.1,b).

Lemma 3.2.b) and (3.1) imply

II(AI - A-'F' (S'V(t)P'N _ pNS(t))zfI :5 const. ( r) c'11Z jdomA

for all t E [0. T]. Z E domi A and NV sufficiently large. This together with (3.3). Lemnma
B.1,bJ and Lemma 3.2.b) implies

11(pN~S(t) _ SN\(t)pA')(AI - 'I

< C r )'IIS(t)zJJ + coflst. ( r) IIZlld.mA + const.( r)IzII

for 0 < t < T, N sufficiently large and z E domA. The last inequality shows

IpS(t)Z _ sN(t)PNz11 5 coflst. ( r)"IIZI~domnA2

for 0 < t < T. N sufficiently large and z E dom A'. I

The rest of this section is devoted to optimal convergence rates, i.e., rate estimates of
the form 0(1/.N") and 0(/ 3 2 .respectively.
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THEOREM 6.2. Let fi = 2 if (H) is satisfied, otherwise =3/2.

a) For any c > 0 there exist positive constants cl, C2 and N, such that for N > Vi

(6.9) IISN(t)pIVz _ pN~S(t)zjI 5 cl ( r)e(WO+'tlII ldom A. t >6r + E

and

(6.10) litL NSN(t)pNz _ pN1S()zIIH, C2 c(r )#e(wo+()1IlzljdomA, t> 7r'+ E,

if z E domA.

b) For any e > 0 there exist positive constants C3, C4 and NT2 such that for N > N2

(6.11) SA(fp -PStff C3(~ 2 ~ccti~ + -~frio) t > 67- + c,

and

(6.12) iLLA~()~ PIA7IS(0zliHl < C4( j7)2e(wo+()t (I??, + 11Iwo ). 1 t > 7r + F,

for all z = (q o wi th V E VF-r ;R)

c) For any T > 0 there exsist positive constants c,5 andN?3 such that

(6.13) IISN(t)p-''z P_ pS(t)Zfj ,( r c() izildorn 43, 0 < t < T.
N

for all Z E dom A 3 and N > N3 . For z G dom A4 we can replace the right-hand side of
this estimate by c5 (-L )2 j~dr

PROOF: As in the proof of Theorem 6.1 we get for NI sufficiently large. N > .~

llpNS(t)Z _ SN(t)pA ZII 5 1 CAt KP-'(AI - A)'Z - (Al - A-\ -pZ)dAjj

+ 1 1J 1 C ~A (P -- (A I - .A)' (AlI - A'\' -'p P\--) dAjf

-I(JI + J2).2ir

Using the parameter representation (5.1) for Fl,,,, and Lemma B.2,a) we get (observe also
6b < 6r + E)

J11 5 2c( r) 8 11ZIld..A tReA ImA5 dAlI
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for t > 6r + c and N > N 2 . Using Lemma B.2,b) we obtain analogously

J 2 -< const. (Nr)6e(-°+"t[[zjjdomA

'2 N

for t > 6r + f and N > N 2 . If p E IV'"(-r,0;R" ) then in the estimates for J, and J 2

we can take 3 = 2 and ItiI + IkAjjwi,. instead of IIZIldom.A This finishes the proof for (6.9)
and (6.11).

Since (tLNSN(t)PNz - PNtS(t)z)(O) equals the vector component of SN(t)pNz-

P"S(t)z, we get from (6.9) the estimate

(tLNSN (t)pN Z _pIfNtS(t)Z) (O) C r )1  "li")jZildom A

(resp. <c1 (,) 2e(wo+)(i,?I + 'I1, 111)) for t > 6r + e and N > N2. It remains to estimate

IItAL u S N (t)P" z - iAPNS(t)ZI]L2 < 1AN SN(t)pN - APfi S(tz 11.
where we have put = -pi, i.e., AN is the orthogonal projection domA - ZN

Since AN and AP", are bounded operators, we get from (4.9) and (4.11)

AA'S(t)P:"z - APj"S(t)s
(6.14) _ j eAl(A,(AI-_AA')_pA z- AP'(AI-A)_1z)dA

for t > 2b. Easy computations using also (A")- 1 P.\ = pNA-IP,' and A-'P'AP' " =

Pi" yield

- A" - APi(AI - A)-':

(6.15) = AN(AI - A N) -1 (AP - PN'A)(AI - A)- z

+ \AN(AI - AN)-p'(I - PN)(AI _ A)-z.

From A N (AI - A N) - 1 = A(AI - A N)- 1 - I and Theorem 4.1,a) we get

(6.16) IAN (A - A")- 1 P''I1 < const.ImA 2 for A E E,,, and N > N 2.

With the notation used in the proof of Lemma B.2 we have

(6.17) (I - P')(AI - A)- z = (V,(O) - N(O), V- 0N) = (O, V-, ).

An easy computation (see Lemma 2.1 for the definition of pN and Pi') shows

(APi" - PA A)(N, (O).tI,) = (L( N -01? 0).
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This and (6.15)-(6.17) imply

IA N(,j AI- AN)-IpNZ - AP/N(AI - A)-'zjl

< const.AI Im A12 (L(tPN - - )

< const.IIm A3 (IL( O N - V) + 11- 1k IIL=)

for A E E,,, and N> N 2 . The estimates used in the proof of Lemma B.2 show that

I.AN(A - AN)-pNZ - APN(AI - A)-1 zl
(6.18) < const.IImAi6(--)#!IZjdomA for A E E,, and N > I\2.

N-

If y E W1,OO(-r,O;R") then i3 = 2 and IZildo mA can be replaced by 1771 + I+ W', . An
analogous proof shows that

11.AN (I - A N ) - PN z - AP N(AI - A)-'zll
(6.19) < const.( )Izllo.A for A E 2,., and N > N2-

Estimates (6.18) and (6.19) together with (6.15) yield

1A S N (t)P >,V - APj'NS(t)zjII < const.( N) ,o +)tIzI ldom ,

for t > 7r+ E and N > N 2 with the obvious modification in case € E I"1'=(-r, 0,R").
For the proof of part c) we choose A E p(A). Then Lemma B.2,b), Lemma 3.2.b) and

(3.1) imply

II(AI - AN) - ' (SN(t)PNz - P S(t)Z)II < const.(-r)'ZIdo,A

for 0 < t < T, z E domA 2 and N sufficiently large. This estimate together with (3.3) and
again Lemma B.2,b), Lemma 3.2,b) implies (6.13). The result for z E doam A is clear if
we observe that 171 + I<;tu'.o - const.1ZIldomA?. ]

Remarks. 1. The result of Theorem 6.2,c) shows that the vector component of S'(t)P'"
converges to the vector component of S(t)z (which is the solution x(t) of (1.1)) with
rate 1/N 2 uniformly on bounded t-intervals for sufficiently smooth initial data (e.g., z E
domA 4 ). Note that the vector components of S(t)z and pNS(t)z coincide.
2. The condition z E domA for the estimates (6.9) and (6.10) can be replaced by the
condition z = (q, y-), ,r E TV' 2(-r, 0; R"), as can be seen from (B.14).
3. Since S(t) is compact for t > r, the estimate (6.1) also implies

IISN(t)P N - S(t)Ilc(z'z) -_ 0 as N -- oc

for t > 5r + e.
4. One should observe that the estimates (6.10) and (6.12) are estimates for the H'-norm,
i.e., involve the derivative of tLAS"'(t)P-"z - P iS(t)z.
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7. THE LINEAR QUADRATIC OPTIMAL CONTROL PROBLEM

W~e consider the following control problem:

For given initial data z = rj0) E Z minimize the cost functional

(7.1) j(u, Z) =](1Y(i)1 2 + IU(t)12 ) dt

over u E L2(O'coo; R') subject to (1.1) or, equivalently, to (3.1).

DEFINITION 7. 1. a) The pair (A, B%) is stabilizable if there exists an operator k: E C(Z, R')
such that A - Sk generates an exponentially stable semigroup on Z.

b) The pair (C, A) is detectable if there exists an operator! E C 1(RP, Z) such that A - 9
generates an exponentially stable semi group on Z.

The following theorem is w~ell-known (see [24]).

THEOREM 7.2. Let (A, 5) be stabilizable and (C, A) be detectable. Then the algebraic
Riccati equation

(7.2) (A*H + HA - H8B~H+C*C)z =0, z EdomA,

has a unique seif-adjoint and non-negative solution H1. Moreover, the operator A - BB*H
generates an exponentiallY stable seinigroup T(t), t > 0, on Z. The optimal control for
(7.1) is given bY

0(t) = -8*HIT(t)z, t > 0.

Remark. Without loss of generality we can assume in Definition 7.1 that A:*R' C dom A*
and gR C dam A. In fact, the solution II of (7.2) satisfies HIZ C dom A* (see [7]). s0 that
HBSR m C dom A*. Similarly the dual Riccati equation

(A'- + EA* - EC*CE + BB*) z = 0, z E dom A*,

has a unique, self-adjoint and non-negati-e solution E such that EZ C darn A and A- N-C*C
generates an exponentially stable semigroup on Z (cf. [22]). Thus IC*RP C dam A.

Let B N =- pNB and CN = CIZN. The following result is concerned with stabilizabilitv

of (AN, BN ) and detectability of (CN, AN), both uniformly with respect to N.

THEOREM 7.3. a) Suppose that (A, 6). Then there exist constants All , > 0 and
a sequence ICN E £(ZAN, Rm) such that IIA:NII is uniformly bounded and

lie(ABK~I All e--, , t > 0,

for N sufficiently large.

b) Suppose that (C, A) is detectable. Then there exist constants A12  ":, 2 > 0 and a
sequence gN r- L(RP. Z-V) such that l 1QN 11 is unifornly bounded arid

Ikf(A*'%GNCN)1tJl Al_ -1 2( t0,



for N sufficiently large.

PROOF: a) Let (A,B8) be stabilizable. Then there exists an operator K C- C(Z, R')
such that A - WC generates an exponentially stable semigroup. We put KN"' = A:IZN,
N =1,2,....Then, for z EZN,

(N- BN )C) = Az =~ ALz-BPLA

= (A - 3pPN )L N Z

i.e., the semnigroup e(AN7BNKN)t is the approximatin~g semigroup for the delay system

i(t) = LN--O,

which corresponds to A -BP. Let )C(7, t) = K077i + frK(), (O) dO for (171 y) E Z,
where Ko E Rm"" and K(-) E L 2 (-r,0; Rmxn). An easy computation shows that

KP'~~. ) =K 0~ +f K(0)P(0) d9.

where N EN7- KAE' with =(-N/r) f-1 K(9) dO. Therefore

0

LN(; L~p B BKo O() - B] KA'(9)tp(9) d0.

The delay system corresponding to A - Sk is i(t) = L(x 1 ). whcre

L(() = - BKop(O) - B fK9~9 dg.

We choose -y as in Lemma 2.4 corresponding to L and w > 1, b > -. , 0 < 6 < 1 as in
Section 4. The estimate

ILNeAf) IL(e NI,,)I + ILN(e NIfl)-

(1 - b)IAIIBI -j(q _JN(0)I Ie (0)I1 d9

<(I - 6)IA! + IBIr" 2 1j _l -N IlL2 max lp(Ar/N )Ik

<(1 - b)IAIl + IBlr"1211K - jKN I'I'0aI Am'\

for A E E,, shows that for 6 E (0, 6) there exists an N0 such that

lL(IN H 1-6A for A E awadN>N 0.
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Using this estimate we can establish Theorems 4.1 and 4.2 for the operators AN 13 AN:
N' > No. But then also Theorem 5.1 is valid for A-B8K and AN' B3N:N, N > No, which

* proves the result on stabilizabilitv.
b) Let (C, A) be detectable. Then there exists an operator (- C (RP, Z) with C-R C

* dom A such that A - 9C generates an exponentially stable semigroup T(t). t > 0, on Z.
Since T(t) is not the solution semigroup of a delay system the proof in this case will be
somewhat different compared to that for a).

For N =1,2.... we define

gN= pNJ5~ Pi" G C(RP, ZN).

Since 9Y E domA for all y E RP, there exists a function G E Hl(-.r,0;RnXP) such that

(7.3) Q-y = (G(O)y. Gy) for all y E RP'.

Using the definition of gN and Lemma 2.1 we get

(7.4) gN y = (G(O)y,GONY) for all y E RP,

where 6N = (1/2) 5-NA_ I£EN(G(tN) + G(tN 1)). The matrix representation GN of g.N' is
given by

GN = col (G~v.. .. , ,G N) E R' (N+l)xp.

where GN = G(O) and G N = (112)(G( tN 1 ) +G(tA')) 1k - ,. N. From (7.3) and (7.4)
it is easily seen that

~~gN~~gj;2 G tN f l ) - G(O)l + JG( tN 1) G(9)) d ' j )

where w(c: G) = supI19,1<( IG(O) - G(7)'. Therefore

(7.5)N-oc

From AGy = (L(Gy), dy) and

AQy = APQ = (L(Z Birk t)) k r E Ek(G(tk- 1) - G(tk N
k=1 k= 1

it follows immediately that (because ZN_= BN G(Nk - PING and PING --, G with respect
to the graph norm)

(7.6) Jim jIA NgN - A91= 0.
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The representation (4.10) together with Theorem 4.1,a) shows that for to = 4r

(7.7) IIA"NSN(to)If < 1 for all N.

where the constant Al does not depend on N.
Let TN(t), t > 0, denote the semigroup generated by .AN - gNCN. By the variation of

constants formula we have

(7.8) Tg(t) - SN(t) - SN(t - S)gNCN TN(s) ds, t > 0.

By Gronwall's inequality and (7.5) we obtain

(7.9) IITN(t€)zHI <_ const.jzI, 0 < t < to, N = 1,2.

This together with (7.6) and (7.7) gives

I1A-"T" (to)ZII < MIII + const.llA Ng"l IIzIl < -IzII,

for all N, where A"I is not dependent on N. From [20; p.561, we see

(7.10) T N(t) = I-- ( - (A N d tNC 0

where f = f, U F 2 U f 3 and

f, = {A I Im A = ( -Re-)i .,eA < 31.

f2 = A jIm)j < d(a-)o ReA = A }.

f3 = JA E fl)}

with a (1/to)ln2MI. 3 = I + supN 119C' (11 the constant defined in Lemma 2.4).
Moreover (see [20:Thm. 4.4j) we have

(7.11) I l- (A4 N- gcN))- I< Con~t.IIm A I

for A E ,6 = {A j lIml _ e(A -ReA)l °, RleA _ /}, where "const." does not depend on
N.

For z E Z we consider the equation

(7.12) (AI - (AN _ gNCN))zN = pNZ

Let A0 E p(A) and put

.F,\ = I + (AoI - A4) - ((A - Ao)I + 9C).
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It is easy to see that A E p(A - QC) if and only if r7, is continuously invertible. If this is
the case then

(7.13) (A- (A - C)) 1  )F '(AolI- A)I.

Since A0 E p(AN ) for N sufficiently large, we analogously have

(7.14) (Al - (AN" gNcN)) = Y)-'(AoI - AN-

for A E p(AN _ gNCNT) and N sufficiently large, where

,:V= I + (Ao1 - AN)-' ((A - \O)i + gI~N)

Using I = Fx- (A01l - A)-' ((A - Ao)I + PC), A E p(A - gC). we see that equation (7.14)
is equivalent to

(7.15) .(I+=(AoI - X") P~

where

=--((A - Ao)((Ao1 - A%'P)- - (Ao1 - A)-')

(71)+ (AO1 - A-\ 'CA - (Aol1- A-C

Since (A01 - A)-' is compact, we have

IIP-\(AoIl - A)-' - (Aol - A)-' Ii 0 as N -- x

and therefore by Lemnvi B.1 also fj(AOI - X')'IpN - (Aol - A) -- + 0. Using this and
(7.5) we obtain from (7.16) that

JIKF-\'1-+0 as N-+ o

uniformly for A in compact subsets of p(A - PC). Therefore for any compact subset K of

p(A - gCJ there exists an N 0 such that (.FA,(I + E£,V)) - exists for A E K and N > No,
i.e., K C p(AN - g'C") for /V > No. Equations (7.14) and (7.15) imply

(NV' Z($~)V~'for A E K, N > No.
k=0

This representation shows that

urn ffY j'- FI'~ 0
N-
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uniformly on compact subsets of p(A - 9C) which immediately implies

(7.17) lrn 11I(AI - (AA N _gA'C, ))-N _ (AI - (A - 9C)) zrI = 0

uniformly on compact subsets of p(A-QC). The last result implies (by the samne argumlents

as those given in the proof of Theorem 5.1) that we can replace /0 in the definition of f by
any w > W2 = SUP{Re A IA E o(A - 9C)} and still have the representation (7.10) for N'
sufficiently large. As in the proof of Theorem 5.1 (but using (7.11) and (7.17) instead of

Theorem 4.1) we obtain T' tII: co s ew , t > 2 ,

which together with (7.9) (for t E [0, 3to]) finally gives

(7.18) JIT""(t)II < const.e-l, t > 0,

for N sufficiently large. I

Corresponding to problem (7.1) we consider the following approximating problems:

Given z E Z minimize

(7.19) J,%'(U; z) =j (ICNZA'(t)I2 + Izi(t)12) dt

subject to

(7.20) zAv(t) = S Vt)P~vz + ]0 S Vt - S)BU (S)ds, t > 0.

THEOREm 7.4. Suippose that (A.B8) is stabilizable and (C, A) is detectable. Dhen for N
sufficiently- large the algebraic Riccati equation associated with (7.19).

(7.21) (A-A)*fl + HAN\ _ flgN(1N )*fl + (C"VrC"N = 0.

has a unique self-a djoint, non-negative solution fl\* There exist positive constants -1 .
A12 and w such that

InI'VI All and -~(~8 (~n~ 1 1  2 Kt> 0,

for A' sufficiently large.

PROOF: The result on existence and uniqueness of a solution rJA' of (7.21) for N sufficiently
large follows immediately from Theorem 7.3 and Theorem 7.2 applied for A7, 8,V and C,

Let VV E C(ZN, Rm) and g N E C(RP, ZN) be defined as in the proof of Theoremn 7.3.
Then for all z E ZN

(HA::, ) = inf jN'(U Z) <5j(KZ()
UEL 2

= j~(CA,AN IN KN)(Z12 + AAC.(AN -UsKN)t zI2) dt < KiI14',
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where K is not dependent on N. Since E1N is non-negative, this implies

II1INII < Kc for all N.

From equation (7.21) we immediately get

- \(.rvv*N + nlN (A N - 13N (B N )*nN'

+ riNBN\(B3)rA' A+ (CN7 )*C.\ o .

Let zNV(t) = eXp((AN_ L3.\I(LBA)*llA)t)z, j > 0. Then a short calculation gives

d (zN (t). rIN N(t)) + I (zBN)*N 'N(t)1 2 + ICNZN(t)12 -0. t > 0,
dt 

*
or

(rIZN~),_N~))+ j(BN)*jNN(S) 2 + JCNZN(S) 2)d

=(HA Z,z) 5 K<1Z11 2. t > 0.

As a consequence

(7.22) j(IML~ )*n- z,()I' + C A)2)ds< I12 t>.

By the variation of constants formula we get

Z A (t) = T-'(t)z + JT.'%(t _ S)(g.\,CN - sB>' ()-v riz "(s) ds. t > 0.

where Tv(t) = exp((A-" gXCN)t)j t > 0. Taking norms and observing (7.5), (7.18) and
(7.22) we have

I~z~t .11(-t~' (IIZII + SUP jgCNjI + 'cNZN(,)Id,

+ k 5 I ft3 8 l s-.. R ds)
/o

+ jB,61t''12 (,(B )*IINN?() 12 ds) 11

Me t( + t1/ 2 (SUP 1 gN 11 + K 1/2111311) )IIZII
N

for all t > 0 and all A'. Finally we get

j N.(tI2 dt < const.Lj.-Il. Z E Z N

where "const." is not dependent on N. Now the result follows from a theorem by Datko
(see the version given in [22;Thm. 6.21). 1

The following theorem is an immediate consequence of Theorem 7.4 and results given in
[7;Thm. 6.9) and [4:Thm. 2.2]. These results assume that the adjoint sernigroups converge
strongly as is the case for our scheme.
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THEOREM 7.5. Suppose that (A.B8) is stabilizable and (C, A) is detectable. Then the
unique solution flI' of (7.21) converges stronglyv to the unique solution fl of (7.2). The
sernigroups generated by A - 88*rlNp.\ are exponentially stable uniformly with respect
to N > NO for some NO > 0. Moreover, for any c > 0 there exists an N(e) such that

j(-L*l T pN\Z&),z): KJ(u0 , z) + ell ZIII

for all z E Z and N > N(f), where u, -BOZ()
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APPENDIX A

In this appendix we state and prove some estimates involving the Pad&approximant
I+r12

LEMMA A.1. For m > 1 and zj < 2m

1 - )/2m _ (i)' (1 + 1) e-((+,_ ., , )n for Rez < 0,

I 8;W2- " -1l/2m or Rez > 0.

PROOF: Let p = z/m. Then

1- z12,m M=_)M 1 -/ M1]
( 1 + /2m) (C -(1 +p/2)

(A.1) = I- p2 1 - p 2n m -k-I

k=0

For flp < 2
-_ - 1 - p/2_ -0 1 1 k- )

1/ . .) - )

k=3

and therefore

-~p l l 1 1  o1k-1

_ 1 - p/2 - IP13  + ( 2) l iplk

(A.2) 
+p/2  12 k=4

1 IP13(1± k +l.,k) 1 IP13 1 + Jp/2
-9 1- IpI/2

For Re p < 0 we have

- kp(l P -k-1p,
1 + p/2 1 - JpJ/2)k=O k=O

< -MrRep((' +lpl/ 2 m -)(1 +1p1/ 2  I
- -l/2J / -ip/ 2

This together with (A.1) and (A.2) gives

C_ (1- z/rn (IZI\ 31+iz/2l 1e+ I-/ 2rn ((1+,z-/2ni-_,)

I + z/2,,i 8 ) -1 -z/2nC Izl/M I - jzj/2?-)

S(i)Re: + izl/2m )

18-( L"Zl) + L2Zm.-)W-9:z/2)
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for IzI < 2m and Rez < 0. In case Rep: 0we get

____I. -k1 -kRe p C'mRep <M
1 + p/2) -Rep-

Therefore using again (A.1) and (A.2) we get

e__(_- ____~ 1 IZ 31 + iz /2 mn
1 + z2m 8n2 1- IzI/2m

for jzj < 2m and Rez > 0. 1
,\tN I -rX / ,?V kj

LEMMA A.2. Let ak = ek - .\/2 Then for JAI < p and N sufficiently large

(N > rp/2)
TP 3 3 1+pr/2N foRe>

8NPrI-pr/2N o eA ,
a 5 1 2 2 1+pr) rp(1+pr/2.N) N _RA0

I NPr (1 p/N 1 forReA<0

k 1..N.

PROOF: Let CA'k = A kr/N'. Then

C (N~k - (1 - 2k) k N
For JAI :5 p wehave J(N~k :5 Ipkr/.N" and f(N,k I < 2k for N > rp/2. Lemma A. 1 foi, Z (N

i m l e l 2 2( + P r) r I I r / 2 N k 1 ) fo r R e A < 0 ,
3 rk i 1+2NWpr/2N)frRA>0

8N 3 I-pr/2N frRA>0

for JAI < p and N > rp/2. The estimates of the lemma are an immediate consequence. I
COROLLARY A.3. For anY compact set K C C there exists a constant c = c(K) such that

sup I ,N 1)- fO c( ) ( r ) 2  for all Y.
-r,<0<0 N

PROOF: Since c~ elB-N is the first order interpolating spline for 08. we have (see
[23; Thin. 2.6))

N ' U 2
Ck j:AfvB(8)I <cnst(L 2  sp .~

-r<0<0 k=O 0  ~~-0

Then the result follows from the estimate

sup C )eC (lAk I
-r6<oE I1+ rA/ 2 N))k

k= 1-rA 9Ok<

maxlekN -rA/2N k: onst.(r ) 2

for all A E K and N = 1, 2, . ,which is an immediate consequence of Lemma A.2.
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COROLLARY, A.4. For anyi compact set K C C there exists a constant c = c(K) such that

A (A), C(K)( r )2  for A E K and N = 1,2,.

PROOF: By definition of Azv'(A) and A(A) we have

IAN(A) - A(A)j 5 -y sup Ie'(O) - *,
-r<8<0

where -y is the constant defined in Lemma 2.4. Then the result follows immediately from
Corollary A.3. I

LEMMA A.5. There exist positive constants Ko and a0 such that for 0 < J < N, N-

1 - rA/2N Koe-b'MA
1 + rA/2N I oaIrA

provided a > a0 . In fact K0 = ebw and a0  (In b~r) 1 ) is a possible choice for K0

and a0 .

PROOF: Let 0o = l1-~ 12 e consider the following three cases separately.
Case 1: 0O<ReA < .. A E a.

Ili this case the result follows immediately from

I - rA/2NY < 1 < F.-abebReAIjMAI 5 fb'e abjImAj.
1 + rA/2.N

Case 2: -a 0 <5Re A <0, AG E a,,.
We put A n + 0~. The inequality a > -no implies 1 + (r/2N)a > 0 and therefore

1 - rA/2.N ((1- ra/2N)2 + (rO3/2N )2 1/2 1 - ra/2NV

1 + rA/2N' (j1 + ra /2-N) 2 + (r3/2.N) 2 ) - 1 + ra/2NY

For the function f (o) -r/YN C____ -~2\r < a < 0. we have f (0) 1 land f'(a) > 0

for -00 < a < 0. Therefore f (a) 1on -ao :5a,< 0 and

1 - rA/2.N' 1 - rA/2N N < -6ReA\ < .ab I1mA, j ... N.
1 +rA/2N 1 1+rA/2N

Case 3: ReA < -no. AE Ea".

Let A = -a + i3, o > no Then

1 - ,A/2.7\ N 1 2 1 N < 1+
I +rA/2N I +rA/2N 1  1 1+ rA/2N1)

9.3 + N__ I 4.7V 2 ) N



We claim that

4N 2

(A.4) 4N < ba forA E aa> a0, A'=l,..
rll -

provided a is sufficiently large. Then we get from (A.3)

I -rA/2N <  1 - < (1 + ba) < < e-b 1mAI

1 + rA/2N -1 + rA/2N (1+ )abmI

for j = 1,..., N and a sufficiently large.
We now prove (A.4). Since _eb( +a) , the estimate (A.4) is certainly satisfied if

4N 2 /r < be be ab, a > aOO. Since the function xe' is increasing on x > 0, (A.4) is satisfied
if

(A.5) 4N < baoc booe ab.

r

The definition of a0 shows that (A.5) is equivalent to

ab > r 2Nb r(2N'b -
2- 0( - T)1/2 exp(- (1 _ -)/).

b(b- r) r b b

Using xe-' < e- for x > 0. we see that the last inequality is satisfied for all N provided

eb > r(b(b - r)e)-' i.e.,

S nb(b4- r)

42



APPENDIX B
In this appendix we prove various rate estimates for the convergence of the resolvents

corresponding to the generators of the approximating semigroups SNV(t) We choose K E R
such that 0 E p(A - KT). Then Theorem 4.1,b) shows that also 0 E p(A N - cTN') for N
sufficiently large, N > NI. We put

A =A - nT and AN AN - T7N N> N1 .

Furthermore we introduce the notation

L)= (-4o - tcI.)y;(O) + AjV8)+ 0)p9dO
j=1 f

N ~(A) = A,, _ j(CN I"), &(A) = AI,, - I)

The following formula will be of fundamental importance:

PA'(A\I - A)-' - (AI - A N)-1pN

= (AI - AN)-I (pN (A - KT) - (A N - tcT N )pN)(AI - A)-'

=B1 PI(A - A-\')lANp-'T (.A-pN.A _ I) (AI - A-

= ((AT - A-vF 1 (AI - K - _I)pN(A-Ip.' _-)A - A)-'

for A E p(A) and N > IV,. Here we also have used Af\Vz= AL'Vz for z E V". The
constants w, b and a are chosen as in Section 6.

LENIMA B.1. Let a = 1 if (H) is satisfied, otherwise a =1/2.

a) There exist positive constants c and N, such that

IIP'v(AI - A)-' - (AI - A N)-I pN <C( r)" Im.A 14

for all A E E,.. and N > N1.

b) For any compact set K C p(A) there exist positive constants c and N1I such that

IP(Al - A)-' - (AI ~PAI

for all A E K and N > Ni.

PROOF: For V E H I (i.e., ( p(0), v) E dom A) we get

V) pN(L( O),' (L ))

with (see Lemma 2.1,a))

E E'

k=1
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From (1.5) we obtain

(B.2) LlA. (0), p)=A(( N) N (0(). .N

where (observe ,N(O) =, ()

IpN ') VY(O) + JXNT(- dT,

ON(O) = a(Oy- 1 (I(~) +L~ J XN(,r) dr))

It is obvious that 'N(O) :LX N(r) dT EN I B N(9)iN(tNj) with

This shows N = V(O) - VN, whrVN EN N~= B (tN). Therefore

=,(O &(O)-.L(,p _ (PN + V(O)) = (O)-lL(V - ON) _ - )
vN= 7 _N) _ P((O)±+P(O) _'' = O)NA

This together with (B.2) gives

(B.3) (A-lPA'A _ I)@"(O), ) = _-(Lk(oF-l L- 1) + - N).

If (H) is satisfied wve use

(B.4) lp- Vl= I A(O)(~6 ~()) de) lIAllLl 111P - L2,

otherwise (y JAO - KInIl + E'= J141 + f% A(9)l dO)

(B.5) ll"- _ ,A)j <z5j - Al -c

In case of (B.4) we use ([23; Thin. 2.41)

11V -,P 112 conlst4.l r H1

in case of (B.5) ([23; Exercise (2.10)1)

11IP _ P - : < const. r1 2 bPI1

in order to get from (B.3)

11( pN~.4 _ I) (V(0), V)l 11 rolt()aki
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or, equivalently,

(B.6) I -P A - 'IL( mAZ) < Const.()

for N = 1,2,...
From Theorem 4.1,a) and the estimate IAI < const.lImAI for A E E,, we obtain

(B.7) ((AI - A N )'(AI - K-TN) _ I) pNlLr(z'z) < const. IImA 12

for all A E E, and N >_ N. Using A(AI - A)-' = A(AI - A) - - I we see that also

IIA(AI - A)-JII _ const.Ilm AI2 1zI

for all A E Ea,, and z E Z. Therefore

(B.8) IJ(AIA- 4)-'lIC(Z,do.A) :< const.IImA12 for A E Yoaw.

Now part a) of the lemma follows from (B.1) and (B.6)-(B.8).
In order to prove part b) we use Theorem 4.1,b) in order to see that the right-hand side

in the estimate (B.7) can be replaced by a constant as long as A E K and V > -V,. For
the estimate (B.8) this is obvious. I

LEMMA B.2. Let 0 = 2 if(H) is satisfied, otherwise = 3/2.
a) There exist positive constants c and N, such that

IIP"(AI - A)-'z - (AI - AA) I P < c(')IIm AI15 IIIdom.A

for all A E za . E domA and.N > N1. Ifz=(, ) with E 11" (-r,O; R") then the

right-hand side of the estimate is c( )2 IIm Il(7I + Ipffw,.ec).
b) For any compact set K C p(A) there exist positive constants c and N, such that

IIP'' (AI - A)-'z - (A- A ,)-pNZII _ c( ')"JZIjdmA

for all A E K, z E domA and N > N1. If z = (r7,p) with p E W"1,1'(-r,0;R " ) then the
right-hand side of the estimate is c(k) (101 + IIIlw,,- ).
PROOF: For z = (r,,p) we put (0(0), 0) = (Al -)-'(t,,p). In analogy to (B.3) we get

(B.9) (.A-IpN.A- l)((0),)= -((0)-L(- ),2(0)-lL(¢ - ,N) + 0 _ ON),

where ION = jNo0 Bj'"(tN'). Using (4.1) we get (compare the derivation of (4.2))

1 for A E ,,N = 1,2.
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Then

NI ! (rl+ ' SUP I d761AJ-r<0<0 .f

< const.llzjl for A E Eao,

This together with (4.8) gives

(B.10) IV/,(0)l _ const.IlImAl Jlzil for A E F,, and -r < 0 < 0.

If V is absolutely continuous we have by definition of ¢

(B.11) =¢ =A - .

Observing IAI const.ImAI on E,., we get from (B.11)

(B.12) 110lL- < const.lIm Al2 11Ill for A E 7,

and

(B.13) IJIL o const.IImA1 (1171 + IIjjljw11o') for A E "

if (: E Wl" c( - r, 0; R"). resp.

(B.14) [1hllL2 < const.IImA 3 (iql + jlll111.,2) for A E E

if p E W1 '2 (-r,0: R"). (B.14) specifically implies

(B.15) 1111L2 < const.lIm l3 11 lZIldom.A for A E w

if z E dom A. Depending whether 0' is in 112
,, or in H 2 we have the estimates

(B.16) <-, - IIL <const.( r) 2 1'J H 2,
N

(B.17) llt;" - :NllL. _ const.( .)lt 1Iw2.o,

(B.18) 110 - IIIL -- const.( r)31 2I1P01H2

(see [23; Thm 2.5, Thin 2.6 and Exercise (2.10)]). If (H) is satisfied we use (B.16) together
with (B.14), otherwise we have to take (B.17) or (B.18) together with (B.13) or (B.14),
respectively, in order to get the estimates of part a) from (B.9) and (B.7).

The proof for part b) is analogous but simpler. As in the proof of Lemma B.1 one has to
use the fact that the right-hand side of (B.7) can be replaced by a constant for A E K. I
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